

1.4472 IMPLANT

1.4472/ F 1586 - Austenitic stainless steel for implants

Features and peculiarities This 1.4472 IMPLANT steel is PESR (Pressure ESR) remelted. Its N content is high, but the S and C contents are kept as low as feasible. The contents in Cr and Mn are also high. This steel contains also a small addition of Nb. The average value of its PREN indices is 35.8 against 28.9 for the standard 1.4441 IMPLANT grade. It indicates a very good pitting corrosion resistance. This steel does not contain any ∂ (Delta) ferrite and is off course non-ferromagnetic up to the highest amounts of cold working. Its high toughness renders the machining somewhat more difficult, requiring an adaptation of both the cutting conditions and the tooling.

Uses The corrosion resistance of this steel, mechanical properties and fatigue resistance indicate it as the material of choice for numerous medical applications in bone surgery, such as for internal fixation devices and endo-prothesis, as well as for various others medical and surgical applications. The particular mechanical properties and reproducibility, make this steel a prime material for micromechanical devices.

Standards	Material number ISO EN 10088-3 09/05 DIN ASTM NF UNS			1.4472 5832-9 X4CrNiMnMo 21-9-4 X4CrNiMnMo 21-9-4 F 1586 S 94-090 S31675								
Chemical composition (‱t)	C max. 0.008	Si max 0.75	Mn . 2.00 4.25	P max. 0.025	S max. 0.008	Cr 19.5 22.0	Ni 8.0 11.0	Mo 2.00 3.00	N 0.25 0.50	Nb Fe 0.25 balance 0.80		
Dimensions and tolerances	 Bars Ø mm: Out of roundness max.: Other dimensions on request 				3 – 20 ISO h6 (h9) ½ diameter tolerance t							
Delivery condition	Standard: Bars : ● Bars Ø ≥ 3.00 mm:				3 m (+50/0 mm), cold drawn, ground, polished, Ra max. 0.4 μm (N5) pointed and chamfered							
Mechanical properties	• Bars	S:	Condition annealed cold worked		Rm (MP ≥ 740 900-150	$\begin{array}{ll} ({\sf MPa}) & {\sf R}_{0.2\%} \\ {\sf 40} & \geq 430 \\ {\sf -1500} & 600{\text{-}1} \end{array}$		MPa) A _{4d} (%) > 40 200 35-13		⊷4d (%) • 40 •5-13		
Availability	Dimen	sions	courantes	en stoc	:k, see: <mark>[</mark>	Delivery	program	<u>1</u>				
Cutting conditions	Machining: Cutting speed: Lubricant-coolant: • The optimal cutting conditio chip dimensions, the lubrica the roughness to be achieved			relatively difficult better in the cold worked condition $V_c \approx 20 - 25$ m/min. Individual choice ons depend on the machine tool, the cutting tools, the cant-cooling fluid, as well as the tolerances and surface ved.								

1.4472 IMPLANT

1.4472/ F 1586 - Austenitic stainless steel for implants

Cleanliness	According to: AS	According to: ASTM 45 (E 1122):							
	Class designation	A	В	С	D				
	Type of inclusions	sulfides	Al oxide	silicates	globular oxide				
	Thin	≤ 1.5	≤ 2.0	≤ 2.0	≤ 2.5				
	Heavy	≤ 1.5	≤ 1.5	≤ 1.5	≤ 1.5				
δ (Delta) ferrite	This steel does not contain any δ (Delta) ferrite. It is non-ferromagnetic. According to the Schaeffler-DeLong diagram revised by the formulas: • $Cr_{eq} = 1.5Si + Cr + Mo + 2Ti + 0.5Nb$ • $Ni_{eq} = 30(C + N) + 0.5Mn + Ni + 0.5(Cu + Co)$ • $%_{vol.} \delta$ ferrite or Ferrite Number FN FN = ([{1.375 (Cr_{eq} - 16)} + 10] - Ni_{eq}) 2.586 • Negative values indicate the absence of δ (Delta) ferrite								
PREN indices	PREN – % (r + 3 39)	/Μο ± 18%N							
FREN INDICES	• $PREN = 7001 + 3.37$	min	30 6	6					
		max	40 0	9					
		max.	+0	0					
Forming	Forming Warm ⁻ forging · 1050 – 1150°C/fast guenching/cooling								
5	Cold:		3						
	strong cold work hardening								
	 A 2 to a 15% amount of cold work before annealing is recommended to prevent a too fast grain growth. The 450 - 970°C temperature range should be avoided. It can lead to the formation and precipitation of intercristalline σ (Sigma) and/or ψ (Chi). The formation of these phases may lead to intercristalline corrosion, brittleness, reduction of ductility and the polishing abilities and adequacies. In such cases, a 1050-1080°C/ fast quenching/cooling solution anneal is recommended, but the mechanical properties provided by a cold working will loose at the same time. 								
Hardening	This 1.4472 IMPLANThis steel can be had	NT steel cann ardened by co	ot be therm Id work onl	ally hardened y.					
Microstructures	Delivery condition: Cold worked:	hot rolled cold worke	austen ed deform	ite, annealed ned austenite					
Polishing	Mirror polishing: Electropolishing:	well adapt well adapt	ed ed						
Laser marking	The HAZ (Heat Affected Zone) produces by a normal laser marking, should not affect the microstructure, but not in case of overheating (over blackening). More info								
∂ (Delta) Ferrite	 This1.4472 IMPLANT steel does not contain any ∂ (Delta) ferrite. 								
Surface oxidation	Thermal oxidation build cally of by pickling.The presence of sur strongly decrease the strong	d up an oxide face oxide su ne corrosion r	layer which ch as a col esistance.	h should be eli ored oxidation	minated either mechani- , or a scaling, may				

EDELSTÄHLE V FINE STEEL AND V	SFINS ET MÉTAUX IND METALLE METALS								
	1.4472 IMPLANT								
	1.4472/ F 1586 – Austenitic stainless steel for implants								
Pickling - Passivation	 A thermal oxidation forms an oxide layer, which should be entirely eliminated either mechanically or chemically by pickling. These oxides may significantly decrease the corrosion resistance. The presence of an oxide scale or rests of it reduces strongly the corrosion resistance. The passivation treatment of the surface cannot by itself only decreases the corrosion risk of an oxide surface. 								
Corrosion resistance	 The pickling as well as the passivation procedures, and the products used to that end, should be conform to the requirements of austenitic stainless steels A staining "Flash back" reaction can be avoided by pickling the surface before the passivation treatment. <u>More info</u> A passivation treatment is not necessary after electro polishing. 								
Elementary precautions	 The most elementary protection is to always keep the surfaces very clean, polished and passivized. The parts should always be very well cleaned (no usage residual) and dried. Only use adapted chlorine free disinfection, cleaning and washing products. 								
Physical properties	Properties	perties Unit Temperature (°C)							
	·		20	200	300	400	500		
	Density	g cm ⁻³	7.90						
	Young modulu E	GPa	195						
	Poisson coefficient		0.29						
	Electrical resistance	$\Omega.mm^2.m^{-1}$	0.75						
	Thermal expansion	m m ⁻¹ K ⁻¹ 10 ⁻⁶	20–100°C	20–200°C 16.6	20–300°C	20–400°C 17.4	20–600°C 18.1		
	Thermal conductivity	W.m ⁻¹ .K ⁻¹	14			15.2			
	Specifique heat	J.kg ⁻¹ .K ⁻¹	500						
	Relative permeability µr max. 1.01								
	Magnetism is not ferromagnetic								

Disclaimer: The information and data of this informative "Data sheet" are indicative only. They are not use instructions. The users must define and endorse them in each case.