

UNS C72700 – Spinodal aushärbarer Cu-Basis Legierung

Merkmalen und Besonderheiten

Die NICLAFOR 1000 ist eine spinodale aushärtbare, korrosionsfeste und absolut amagnetische Cu-Ni-Basis Legierung. Die Aushärtung entspricht eine Entmischung der Matrix in kohärenten Partikeln, deren Zusammensetzungen und Eigenschaften von dem Ausgangzustand, Ausscheidungstemperatur und Haltezeit abhängig sind. Dadurch, kann eine breite Palette von Eigenschaften erzeugt werden. Die gewälzte Bänder sind für das Tiefziehen, Feinschneiden und Prägen von höchstpräzisen Teilen mit hohen Werkzeugstandzeiten besonders gut geeignet. Die sehr glatten Oberflächen sind mit allen bekannten Verfahren, inklusive Diamant Zerspanung, für weitere Veredelungen fähig. Diese Legierung ist auch als Stab- und Drahtmaterial verfügbar.

Anwendungsbereiche

Die NICLAFOR 1000 Legierung wird in zahlreichen Industriezweigen eingesetzt. Sie wird insbesondere für das hochpräzision Feinschneiden mit langen Lebensdauer der Werkzeuge geschätzt. Seine Verschleiss-Beständigkeit ist eine Grundeigenschaft.

Normen Material Nummer NICLAFOR 1000 (CuNi9Sn7)
UNS C72700

Chemische Zusammensetzung (%p)

Pb Cu Ni Sn Mn Zn Fe 8.50 5.50 max. max. max. max. max. Rest 9.50 6.50 0.50 0.03 0.50 0.50 0.02

Ausführungen und Lieferzustand

Bänder Halbzeug

Fertig gewalzte Bänder: auf Endbreite geschnitten in gerichteten oder gewalzten Ausführung in Ringen oder Spulen

Verfügbarkeit

Standardabmessungen ab Lager, siehe: Lieferprogramm

Tabelle 1 Mechanische Eigenschaften max. - min. Eckdaten

Zustand: geglüht 800–810°C	Hv	Rm (MPa)	R _{0.2} (MPa)	A ₁₀₀ (%)
TB geglüht und abgeschreckt	90–125	420–450	≥ 200	≥ 30
TDX abgeschreckt + kaltgewalzt	≥ 320	≥ 780	≥ 650	≥ 1.0
Zustand: geglüht 800–810°C				
TD abgeschreckt, kaltgewalzt				
+ ausgehärtet 350°C/3h	290–300	740–810	≥ 510	≥ 8
rasche Abkühlung				
TDX abgeschreckt, kaltgewalzt				
+ ausgehärtet 350°C/3h	≥ 350	≥ 1050	≥ 950	≤ 1.0
rasche Abkühlung				

Glühen

Weich: 780-800°C/ Abschreckung >5°C/sec

Entspannung: bis 250°C

Aushärtung

Typische Abschrecken: 800°C/20-30 min/Abschreckung >5°C/sec

Typische Aushärtung: 350°C/3h/rasche Abkühlung

Besondere geeignet

- Tiefziehen, Hochpräzisions-Feinstanzen und Schneiden, Prägen
- Hochgeschwindigkeit Zerspanung
- Höchst Anforderungen an die Oberflächenqualität
- Total amagnetische Komponenten

UNS C72700 – Spinodal aushärbarer Cu-Basis Legierung

Abbildung 1 Härte Hv TD: Kaltgewalzt + TH: Aushärtung 350°C/3h

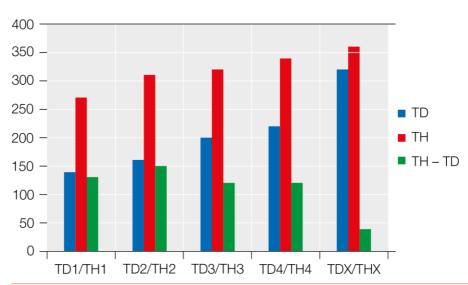
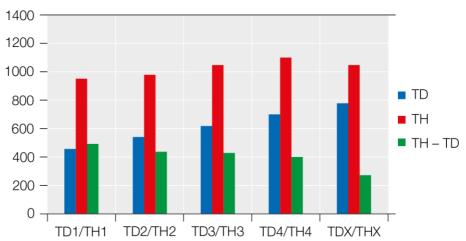
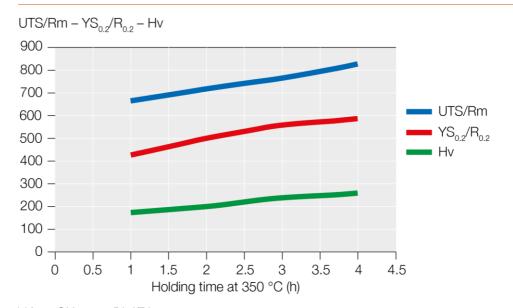
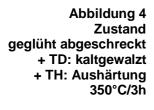
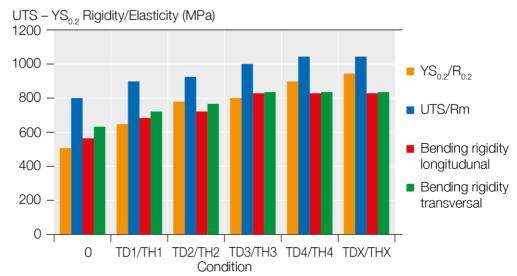


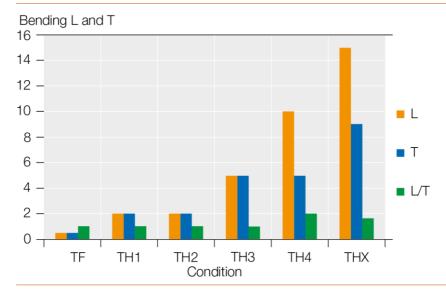
Abbildung 2 UTS/Rm (MPa) TD: Kaltgewalzt + TH: Aushärtung 350°C/3h


Abbildung 3 Aushärtung UTS/Rm – YS_{0.2}/_{R0.2} - Hv Einfluss der Haltezeit



UNS C72700 – Spinodal aushärbarer Cu-Basis Legierung



Einfluss auf die mechanische Eigenschaften und die Biegeermüdung

Abbildung 5 Zustand geglüht abgeschreckt + TD: kaltgewalzt + TH: Aushärtung 350°C/3h

Einfluss der Biegungsart

Biegung

Biegemessungen:
T: Biegung 90°
L: Biegung 90°
Ergebnis:
Werte:

Nach DIN 5011, 15.10.85 quer zu der Walzrichtung in der Walzrichtung Ratio des Biegungsradius/Dicke des Bandes min. Werte

UNS C72700 – Spinodal aushärbarer Cu-Basis Legierung

Mikrostruktur

- Die NICLAFOR 1000 Legierung wird meistens in geglühtem kaltverformtem Zustand zerspant.
- Im geglühtem Zustand die NICLAFOR 1000 ist einphasig kubisch flächenzentriert.
- Im Temperaturbereich der spinodaler Entmischung der Matrix, diese entmischt sich in kohärenten nanometrische Partikeln des Typs (CuxNi_{1-x})₃Sn die, die Aushärtung verursachen.

Verformung und **Formgebung** Warm: 780-950°C

kann ≥75% kaltverformt werden Kalt:

Härtung Verfestigung

- Die NICLAFOR 1000 Legierung kann gehärtet werden.
- Die NICLAFOR 1000 Legierung kann durch Kaltverformung stark verfestigt werden.

Markieren

Laser markieren: gut geeignet

Schweissen

- mittel Gas: Lichtbogen: mittel sehr gut Laser: Elektronenstrahl: sehr gut WIG: sehr gut MIG: ausreichend gut
- Widerstand:

Löten

- Hart: sehr gut geeignet Weich: sehr gut geeignet
- Kleben Kleben:

sehr gut geeignet

Galvanotechnik

 Allgemein gut geeignet. Nicht üblich, da die Korrosionsbeständigkeit der NICLAFOR 1000 Legierung hoch ist.

Polieren

Mechanisch: geeignet Electrolytisch: geeignet

Masshaltigkeit

Die spinodale Aushärtung der NICLAFOR 1000 findet kohärent und isotrop statt. Sie verursacht keiner Verzug oder Massänderungen.

Farbe

Die NICLAFOR 1000 Legierung weist eine rosa-artige Farbe auf.

Tabelle 2 Indikative Eignungen

Zustand	Elastizität	Ermüdung	Plastizität	Formgebung	Biegen	Prägen
TB	_	_	****	****	****	****
TD1-TD2	*	*	***	***	***	***
TD3-TD4	**	**	**	**	**	**
TDX	**	**	*	*	*	*
TH1-2-3	**	**	*	*	_	_
TH3-4	***	***	*	*	_	_
THX	****	****	*	*	-	-

UNS C72700 - Spinodal aushärbarer Cu-Basis Legierung

Korrosions-Beständigkeit

Atmosphäre	Beständigkeit	Medium	Beständigkeit
Land	beständig *	nicht oxydierende Säure	beständig
Industrie	beständig *	Trockene Gase O ₂ , Cl, Chlorwasser	beständig
Meeresluft	beständig *	Wasser	beständig
Feuchtigkeit	beständig *	Körperschweiss	nicht beständig
Hohe Konzentration halogenhaltige Gas	nicht beständig	Cyanide	nicht beständig
Schwefelwasserstoff bzw Sulfide	nicht beständig	Halogenide	nicht beständig
Ammoniak	nicht beständig	Oxydierende Säuren	nicht beständig
		Feuchtes Ammoniak	nicht beständig
Spannungsriss- korrosion	unempfindlich		

^{*} kann eine selbst haftende Schutzschicht bilden

Physikalische Eigenschaften

Eigenschaft	Einheit	Temperatur (°C)			
		20	100	200	300
Densität	g.cm ⁻³	8.9			
Young Elastizitätsmodel E	GPa	120			
Torsions- / Schermodulus	GPa	50			
Elektrischer Widerstand	μΩ.cm				
 geglüht abgeschreckt 		≤19.5			
– vergütet		≤15			
Spezifische Elektrische					
Leitfähigkeit	% IACS				
 geglüht abgeschreckt 		≥9			
– vergütet 3h		≥12			
Thermische Ausdehnung	m.m ⁻¹ .K ⁻¹		20-100°C	20-200°C	20-300°C
	10 ⁻⁶			17.3	
Thermische Leitfähigkeit	W.m ⁻¹ .K ⁻¹	53.6			
Biegung Ermüdungsfestigkeit					
10 ⁸ Zyklen	MPa	450			
Schmelzintervall	968°-1078°C				
Magnetismus	nicht ferromagnetisch				

Verzicht: Die Informationen und Angaben dieses Datenblattes sind nur Hinweise. Sie gelten nicht als Verwendungsinstruktionen. Der Anwender dieses Materials muss dies von Fall zu Fall selber bestimmen und verantworten.